

• HPC work is via batch system
– Dedicated subset of compute resources
– Login nodes are shared resource for building code, editing scripts,

etc. Use batch jobs for real work

• Key commands:
– sbatch / salloc - submit a job
– srun - start an (optionally MPI) application within a job
– sqs - check the queue for my job status

• Queues are long!
– Work with the system to get better turnaround time

• Watch your budget! NERSC-hours and charge factors
• Help! consult@nersc.gov

www.nersc.gov/users/computational-systems/{cori,edison}/running-jobs/

mailto:consult@nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

• HPC work is via batch system
– Dedicated subset of compute resources
– Login nodes are shared resource for building code, editing scripts,

etc. Use batch jobs for real work

• Key commands:
– sbatch / salloc - submit a job
– srun - start an (optionally MPI) application within a job
– sqs - check the queue for my job status

• Queues are long!
– Work with the system to get better turnaround time

• Watch your budget! NERSC-hours and charge factors
• Help! consult@nersc.gov

www.nersc.gov/users/computational-systems/{cori,edison}/running-jobs/

All of this is
on the web!

mailto:consult@nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

Desktop / login node
• Timeslicing

– core shared by multiple
tasks

– Works when the
computer is mostly
waiting for you

HPC
• You are waiting for

the computer
• Subset of pooled

resources dedicated
to one job

• Start on login node
– shared by many users,

not for computational
work

• Access compute nodes
with sbatch or salloc

• Batch script
– Copied to queue
– Has directives for

SLURM, and shell
commands to perform
on first compute node

• Access your other
allocated nodes with srun

• stdout, stderr saved to file
– (when running in

batch mode)

• HPC work is via batch system
– Dedicated subset of compute resources
– Login nodes are shared resource for building code, editing scripts,

etc. Use batch jobs for real work

• Key commands:
– sbatch / salloc - submit a job
– srun - start an (optionally MPI) application within a job
– sqs - check the queue for my job status

• Queues are long!
– Work with the system to get better turnaround time

• Watch your budget! NERSC-hours and charge factors
• Help! consult@nersc.gov

www.nersc.gov/users/computational-systems/{cori,edison}/running-jobs
/

mailto:consult@nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

What the batch system needs to know:
• How many nodes (or CPUs) does this job need?

– Mostly NERSC allocates and charges by the node
– Jobs needing no more than half of one node - and willing to coexist - may

request CPUs in the “shared” partition

• For how long does it need them?
– Wallclock time limit

NERSC-specific extras:
• What type of CPU?

– KNL or Xeon (haswell/ivybridge)?

• Which filesystems will this job use?

• Node is the basic unit of allocation at NERSC
– Think “one host” or “one server”
– Single memory space, multiple CPU cores (24 or 32 or 68 ...

• And a core might support hyperthreading

With
hyperthreading

Without hyperthreading

Hyperthreading
• Fast timeslicing

– Good when arithmetic units
frequently wait on memory

• Core holds state of 2 (4 on KNL)
processes, they share arithmetic units

• SLURM views each hyperthread as a CPU
• But most HPC jobs perform best when not

sharing a core!
• Usually best to reserve 2 CPUs / core

• A SLURM task is a reservation of CPUs and memory,
up to one full node
– A job has

many tasks
srun -n <ntasks> ..

• Eg: 3 possible
tasks on 2
nodes

What the batch system needs to know:
• How many nodes (or CPUs) does this job need?

– Mostly NERSC allocates and charges by the node
– Jobs needing no more than half of one node - and willing to coexist - may

request CPUs in the “shared” partition

• For how long does it need them?
– Wallclock time limit

NERSC-specific extras:
• What type of CPU?

– KNL or Xeon (haswell/ivybridge)?

• Which filesystems will this job use?

• Optimal number of MPI ranks depends on your
application and problem size (trial and error)
– NERSC nodes mostly have 2-4 GB memory / core,

64-128 GB memory / node, and 24, 32 or 68 cores / node
– You will need some minimum number of nodes for enough

memory to hold the problem size

• Some applications are also multithreaded (OpenMP)
– Trial and error to discover optimal number of OpenMP

threads per MPI rank and of MPI ranks per node

• Most HPC applications run best with a full core (not
just a hyperthread) dedicated to each OpenMP
thread

#SBATCH -N 64 # request 64 nodes

srun -N 32 ./my_app # start ./my_app on 32 of them

 # (default: 1 per node)

srun -n 128 ./my_app # start 128 instances of ./my_app,

 # across my 64 nodes (default is

 # to evenly distribute them in

 # block fashion)

One MPI rank generally corresponds to one SLURM Task

Task 0: ./my_app

Task 1: ./my_app

Task 2: ./my_app

Task 3: ./my_app

Task 126:
./my_app
Task 127:
./my_app

Node 0 Node 1 Node 63

#SBATCH -n 1024 # request sufficient nodes for 1024

#SBATCH -c 2 # SLURM tasks (MPI ranks), with 2 cpus

 # (hyperthreads), ie 1 full Xeon core,

 # per task

#SBATCH -n 1024 # request nodes for 1024

#SBATCH --ntasks-per-node=24 # MPI ranks, with no more

 # than 24 ranks on any node

#SBATCH -n 1024 # request nodes for 1024 MPI ranks,

#SBATCH -c 8 # with 8 cpus (ie 4 Xeon cores or

 # 2 KNL cores) per rank

 # (suitable with OMP_NUM_THREADS=4)

• A partition is the subset of
nodes your job can use
– Each partition has rules about

size of job that can use it

• NERSC partitions
– debug - for small, short jobs

needing quick turnaround
(up to 64 or 512 nodes, up to
30 minutes - default partition
for jobs that fit)

– regular - for most real work
(up to whole partition, or up to
4 days)

– shared - for jobs needing
half-a-node or less
(up to 2 days)

Request partition with (eg):

#SBATCH -p debug

What the batch system needs to know:
• How many nodes (or CPUs) does this job need?

– Mostly NERSC allocates and charges by the node
– Jobs needing no more than half of one node - and willing to coexist - may

request CPUs in the “shared” partition

• For how long does it need them?
– Wallclock time limit

NERSC-specific extras:
• What type of CPU?

– KNL or Xeon (haswell/ivybridge)?

• Which filesystems will this job use?

#SBATCH -t 30 # 30 minutes

#SBATCH -t 30:00 # 30 minutes

#SBATCH -t 1:00:00 # 1 hour

#SBATCH -t 1-0 # 1 day

#SBATCH -t 1-12 # 1.5 days

• Wallclock time, ie real elapsed time
• After this much time, SLURM can kill this job

What the batch system needs to know:
• How many nodes (or CPUs) does this job need?

– Mostly NERSC allocates and charges by the node
– Jobs needing no more than half of one node - and willing to coexist - may

request CPUs in the “shared” partition

• For how long does it need them?
– Wallclock time limit

NERSC-specific extras:
• What type of CPU?

– KNL or Xeon (haswell/ivybridge)?

• Which filesystems will this job use?

• Cori has 2 types of nodes (haswell, knl)
• The KNL nodes have multiple modes for:

– MCDRAM (flat, cache, hybrid)
– NUMA arrangement of a node

(quad, hemi, a2a, snc4, snc2)

• No default (you must specify)
• Specify via SLURM constraint option, -C
#SBATCH -C haswell
#SBATCH -C knl,quad,cache
#SBATCH -C knl,quad,flat

• Supported also on Edison (ivybridge)

• Context: NERSC provides several filesystems
– Most jobs use 1 or 2 of them ($SCRATCH or $PROJECT)

• Problem: sometimes a filesystem is unavailable
– Maintenance, or a failure
– Jobs that try to use an unavailable filesystem tend to

crash
• Maybe after several days in queue!

• Solutions:
– Let them crash
– Stop all jobs when any filesystem is unavailable
– Require that jobs specify which filesystems they need,

and stop only those jobs (from starting)

• Specify filesystems via SLURM “license” feature:
#SBATCH -L SCRATCH
#SBATCH -L scratch1,project

• Not used for $HOME
– (Everything needs $HOME)

• Filesystems you can specify:
– SCRATCH (scratch1, scratch2, cscratch1)
– project
– projecta, projectb, dna
– scratch3 (Edison only)
– cscratch1 (either cluster)

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

A SLURM job script has two sections:

1. Directives telling SLURM what you would like it to do with this job
2. The script itself - shell commands to run on the first compute node

A SLURM job script has two sections:

1. Directives telling SLURM what you would like it to do with this job
2. The script itself - shell commands to run on the first compute node

How many nodes?

For how long?

No --qos == normal
priority and cost

$SCRATCH
filesystem

Xeon nodes on current
cluster (set by
craype-{haswell,ivybridge}
module)

Note: cannot use env vars
in directives - but
directives have equivalent
command-line option

A SLURM job script has two sections:

1. Directives telling SLURM what you would like it to do with this job
2. The script itself - shell commands to run on the first compute node

Make starting
environment like
my login
environment

Run from
$SCRATCH

Start 4 tasks
across my nodes

“sbatch” submits
a job script

• HPC work is via batch system
– Dedicated subset of compute resources
– Login nodes are shared resource for building code, editing scripts,

etc. Use batch jobs for real work

• Key commands:
– sbatch / salloc - submit a job
– srun - start an (optionally MPI) application within a job
– sqs - check the queue for my job status

• Queues are long!
– Work with the system to get better turnaround time

• Watch your budget! NERSC-hours and charge factors
• Help! consult@nersc.gov

www.nersc.gov/users/computational-systems/{cori,edison}/running-jobs/

mailto:consult@nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

• Quick vs cheap (QOS)
– Spend more to jump the queue?

Or wait longer to spend less?

• Faster I/O (Burst Buffer - Cori only)
– Cori has 1.8PB of SSD-based “Burst Buffer” to support I/O intensive

workloads
– Jobs can request a job-temporary BB filesystem, or a persistent (up to a few

weeks) reservation

• Containerized runtime environment (Shifter)
– Docker images can be pulled to the NERSC Shifter Image Gateway and used

as an alternate, portable runtime environment for a job
– Performance benefits for some dynamically-linked executables (especially

Python)

• For jobs in “-p regular”
• Affects where in

queue your job starts
– And the cost!

(NERSC-hours)

#SBATCH --qos=premium

#SBATCH --qos=low

normal

premium
2x cost

low
½ x cost

(scavenger)
(free)

Priority
increases
with time

Resources
are reserved
for these jobs

These jobs
are started if
there is a big
enough gap in
resource
allocation

• Quick vs cheap (QOS)
– Spend more to jump the queue?

Or wait longer to spend less?

• Faster I/O (Burst Buffer - Cori only)
– Cori has 1.8PB of SSD-based “Burst Buffer” to support I/O intensive

workloads
– Jobs can request a job-temporary BB filesystem, or a persistent (up to a few

weeks) reservation

• Containerized runtime environment (Shifter)
– Docker images can be pulled to the NERSC Shifter Image Gateway and used

as an alternate, portable runtime environment for a job
– Performance benefits for some dynamically-linked executables (especially

Python)

• Cori has 1.8PB of SSD-based “Burst Buffer” to support I/O
intensive workloads
– Multiple read/write
– Time-critical read/write (eg writing checkpoint files)

• Stage-in/stage-out: data is moved before/after the job
– Can move individual files, or all files in a directory

• More on BB tomorrow

• Job-temporary filesystem:
– Note “#DW” not “#SBATCH”
– Also note environment variable in #DW directive - special case!

(SLURM normally cannot expand environment variables in directives)

#DW jobdw capacity=100GB access_mode=striped type=scratch pool=sm_pool

#DW stage_in source=/global/cscratch1/sd/username/path/to/dirname
destination=$DW_JOB_STRIPED type=directory

#DW stage_out source=$DW_JOB_STRIPED/filename
destination=/global/cscratch1/sd/username/path/to/filename type=file

• Access BB directory in job script:
cd $DW_JOB_STRIPED

• Persistent reservation:
– Good for multi-job workflow
– Not reliable storage!
– Note creation and deletion use “#BB” not “#DW” or “#SBATCH”

• Create:
#BB create_persistent name=myBBname capacity=100GB access=striped
type=scratch

• Delete:
#BB destroy_persistent name=myBBname

• Use existing:
#DW persistentdw name=myBBname

• Access BB directory in job script:
cd $DW_JOB_PERSISTENT

• Quick vs cheap (QOS)
– Spend more to jump the queue?

Or wait longer to spend less?

• Faster I/O (Burst Buffer - Cori only)
– Cori has 1.8PB of SSD-based “Burst Buffer” to support I/O intensive

workloads
– Jobs can request a job-temporary BB filesystem, or a persistent (up to a few

weeks) reservation

• Containerized runtime environment (Shifter)
– Docker images can be pulled to the NERSC Shifter Image Gateway and used

as an alternate, portable runtime environment for a job
– Performance benefits for some dynamically-linked executables (especially

Python)

• Docker-like container environment for HPC
• Works with MPI, with $SCRATCH, with Burst Buffer, etc
• Solves performance issues relating to dynamically loaded

libraries

• More on Shifter tomorrow

1. Create Docker image
2. Push it to DockerHub
3. Pull it to NERSC Shifter ImageGateway

(Not currently available on Cori, use Edison for this step)
 module load shifter
 shifterimg -v pull docker:image_name:image_version_tag
 shifterimg images # list available images

4. Use it in a job
 #/bin/bash -l
 #SBATCH -N 2
 #SBATCH -t 30
 #SBATCH -L project,cscratch1
 #SBATCH --image=docker:image_name:image_version_tag
 #SBATCH --volume="/global/project/projectdirs/mpccc:/input;/global/csc
ratch1/sd/username/path/to/output:/output"

 cd /output
 srun -n64 shifter python ./my_python_app.py < /input/input_file.txt

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

elvis@nersc:~> sqs

JOBID ST REASON USER NAME NODES USED REQUESTED ...

2774102 R Prolog elvis myscript.q 2 0:00 30:00

 ... SUBMIT PARTITION RANK_P RANK_BF

 2016-11-18T11:24:20 debug N/A N/A

elvis@nersc:~> ls -lt

total 11280

-rw-r----- 1 elvis elvis 132 Nov 18 11:24 slurm-2774102.out

-rw-r----- 1 elvis elvis 208 Nov 18 11:24 myscript.q

Job states you might see:

Note: completed jobs are not visible from sqs

Use sacct

• HPC work is via batch system
– Dedicated subset of compute resources
– Login nodes are shared resource for building code, editing scripts,

etc. Use batch jobs for real work

• Key commands:
– sbatch / salloc - submit a job
– srun - start an (optionally MPI) application within a job
– sqs - check the queue for my job status

• Queues are long!
– Work with the system to get better turnaround time

• Watch your budget! NERSC-hours and charge factors
• Help! consult@nersc.gov

www.nersc.gov/users/computational-systems/{cori,edison}/running-jobs/

mailto:consult@nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

• “salloc” to start an interactive session on compute nodes
• Takes the same arguments as sbatch
• Still a batch job!

– Use “-p debug” to minimize waiting time
• Inherits environment (eg modules you have loaded)
• Not a login shell!

– Run “source ~/.bash_profile” to get aliases etc

• “srun” to run a command across all my nodes

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

• Jobs scheduled in two passes:
– Priority pass: highest-priority jobs are

scheduled ASAP
– Backfill pass: remaining jobs are scanned

to find jobs that can start now in a gap
left by priority pass

• Short jobs are better backfill
candidates than long jobs
– Even if they require many

nodes

• Jobs that can’t run in backfill take
several days to accumulate
sufficient priority for the priority
pass

Edison - 2017 so far

• For jobs in “-p regular”
• Affects where in

queue your job starts
– And the cost!

(NERSC-hours)

#SBATCH --qos=premium

#SBATCH --qos=low

normal

premium
2x cost

low
½ x cost

(scavenger)
(free)

Priority
increases
with time

Resources
are reserved
for these jobs

These jobs
are started if
there is a big
enough gap in
resource
allocation

• HPC work is via batch system
– Dedicated subset of compute resources
– Login nodes are shared resource for building code, editing scripts,

etc. Use batch jobs for real work

• Key commands:
– sbatch / salloc - submit a job
– srun - start an (optionally MPI) application within a job
– sqs - check the queue for my job status

• Queues are long!
– Work with the system to get better turnaround time

• Watch your budget! NERSC-hours and charge factors
• Help! consult@nersc.gov

www.nersc.gov/users/computational-systems/{cori,edison}/running-jobs/

mailto:consult@nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

“NERSC-hours” - based on performance/node relative to 1
core of Hopper (past NERSC system)

1 wallclock-hour is many NERSC-hours!

Your repo is charged for each node your job was allocated, for
the entire duration of the job:
 #SBATCH -N 64

 #SBATCH -t 1:00:00

 srun -N 32 -t 30 ./my_long_app.x

• App only ran on 32 nodes, but 64 nodes were requested
(and allocated), so you are charged for 64 nodes

• 1 hour was requested, but the job ended after 30 minutes,
so you are charged for 30 minutes

If you have access to more than one repo, specify which to
charge in your batch script:
 #SBATCH -A repo_name

• HPC work is via batch system
– Dedicated subset of compute resources
– Login nodes are shared resource for building code, editing scripts,

etc. Use batch jobs for real work

• Key commands:
– sbatch / salloc - submit a job
– srun - start an (optionally MPI) application within a job
– sqs - check the queue for my job status

• Queues are long!
– Work with the system to get better turnaround time

• Watch your budget! NERSC-hours and charge factors
• Help! consult@nersc.gov

www.nersc.gov/users/computational-systems/{cori,edison}/running-jobs/

mailto:consult@nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

Modern compute nodes have multiple sockets, cores,
hyperthreads and Non-uniform memory access (NUMA)

• Two tasks (OpenMP thread or MPI ranks) using hyperthreads of same core are
contending for arithmetic, cache resources

• A task using memory from opposite socket has reduced memory bandwidth
• Two OpenMP threads on opposite sockets might cause cache thrashing between

the two L3 caches

KNL node is even more
complex

• Tiles as well as cores
and hyperthreads

• Up to 8 NUMA nodes
for tasks and memory
to land on

Thread placement
and memory affinity
are increasingly
important for good
performance

srun -n 64 -c 4 ./my_exec

• The “-c” sbatch/srun option controls number of CPUs
reserved per task, not task placement or binding!

• Linux will place threads wherever it sees fit, eg “cram them
into the fewest possible number of cores, leaving other
cores empty” (not ideal!)

• If (“-n” * “-c” != total_available_cpus) then SLURM+Linux
can get confused => pathologically bad placement

• Solution: use --cpu_bind:
srun -n 64 -c 4 --cpu_bind=verbose,cores ./my_exec
srun -n 128 -c 2 --cpu_bind=verbose,threads ./my_exec

Solution: use --cpu_bind:
srun -n 64 -c 4 --cpu_bind=verbose,cores ./my_exec
srun -n 128 -c 2 --cpu_bind=verbose,threads ./my_exec

• Controls what a task (MPI rank) is bound to
– If no more than 1 MPI rank per core: --cpu_bind=cores

– If more than 1 MPI rank per core: --cpu_bind=threads

export OMP_NUM_THREADS=2

export OMP_PROC_BIND=spread # or close

export OMP_PLACES=cores # or threads, or sockets

srun -n 32 -c 8 --cpu_bind=verbose,cores ./my_exec

...If using hyperthreads, use OMP_PLACES=threads

Linux default behavior is to allocate to closest
NUMA-node, if possible

Not always optimal:
• KNL nodes: DDR is “closer” than MCDRAM

#SBATCH -C knl,quad,flat

export OMP_NUM_THREADS=4

srun -n16 -c16 --cpu_bind=cores --mem_bind=map_mem:1 ./a.out

• NUMA node 1 is MCDRAM in quad,flat mode
• “Mandatory” mapping: if using >16GB, malloc will fail

“Preferred” affinity: if preferred NUMA node is full,
allocate to another NUMA node

• Not yet supported by SLURM
• Use numactl instead

module load numactl

srun -n16 -c16 --cpu_bind=cores numactl -p 1 ./a.out

• How jobs work
• What must I request?
• My first job
• What else can I request?
• Where is my job?
• Working interactively
• Getting through the queue faster
• How usage is charged
• Which cores are running what? (advanced)
• Workflows - job arrays and dependencies

Need to run a set of almost-identical jobs?

#!/bin/bash -l

#SBATCH -N 64

#SBATCH -t 6:00

#SBATCH -L SCRATCH

#SBATCH -C knl,quat,cache

runid=19 # update before each job

mkdir $SCRATCH/runs-$runid

cd $SCRATCH/runs-$runid

export OMP_NUM_THREADS=16

export OMP_PLACES=cores

export OMP_PROC_BIND=spread

srun -n 1024 -c 64
--cpu_bind=cores ./a.out $runid

#!/bin/bash -l

#SBATCH -N 64

#SBATCH -t 6:00

#SBATCH -L SCRATCH

#SBATCH -C knl,quat,cache

#SBATCH --array=1-100

runid=$SLURM_ARRAY_JOB_ID

mkdir $SCRATCH/runs-$runid

cd $SCRATCH/runs-$runid

export OMP_NUM_THREADS=16

export OMP_PLACES=cores

export OMP_PROC_BIND=spread

srun -n 1024 -c 64
--cpu_bind=cores ./a.out $runid

• Convenient way to manage sets of near-identical jobs
• The SLURM directives describe resources for a single job in

the array
• Appears in queue as, eg 1234567_1, 1234567_2,..
• To cancel an individual member:

scancel 1234567_7 # cancel array member number 7

• To cancel the whole array:
scancel 1234567

• The SLURM directives describe resources for a single job in
the array
– Common help ticket: “I wanted to run 1000 copies of my

1-node job for 1 hour, so I submitted this:”
#SBATCH -N 1000

#SBATCH -t 1000:00

#SBATCH --array=1-1000

– Desired effect: uses 1000 node-hours (80000 NERSC-hours)
– Actual effect: uses 1000x1000x1000 node-hours (80 billion

NERSC-hours = whole year allocation for repo
• … And P.I. is furious

• Lesson: test your script on a small job array first!

Some workflows require a job to run only after
another job has completed (or perhaps, only if
another job fails)

elvis@nersc:~> sbatch job1.q

Submitted job 5436

elvis@nersc:~> sbatch -d afterok:5436 job2.q

• HPC work is via batch system
– Dedicated subset of compute resources
– Login nodes are shared resource for building code, editing scripts,

etc. Use batch jobs for real work

• Key commands:
– sbatch / salloc - submit a job
– srun - start an (optionally MPI) application within a job
– sqs - check the queue for my job status

• Queues are long!
– Work with the system to get better turnaround time

• Watch your budget! NERSC-hours and charge factors
• Help! consult@nersc.gov

www.nersc.gov/users/computational-systems/{cori,edison}/running-jobs/

mailto:consult@nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/

